
Bandit Documentation

PyCQA

Feb 19, 2022





Contents

1 Getting Started 3

2 Indices and tables 49

Python Module Index 51

Index 53

i



ii



Bandit Documentation

Bandit is a tool designed to find common security issues in Python code. To do this, Bandit processes each file, builds
an AST from it, and runs appropriate plugins against the AST nodes. Once Bandit has finished scanning all the files,
it generates a report.

This documentation is generated by the Sphinx toolkit and lives in the source tree.

Contents 1



Bandit Documentation

2 Contents



CHAPTER 1

Getting Started

1.1 Configuration

Bandit is designed to be configurable and cover a wide range of needs, it may be used as either a local developer utility
or as part of a full CI/CD pipeline. To provide for these various usage scenarios bandit can be configured via a YAML
file. This file is completely optional and in many cases not needed, it may be specified on the command line by using
-c.

A bandit configuration file may choose the specific test plugins to run and override the default configurations of those
tests. An example config might look like the following:

### profile may optionally select or skip tests

# (optional) list included tests here:
tests: ['B201', 'B301']

# (optional) list skipped tests here:
skips: ['B101', 'B601']

### override settings - used to set settings for plugins to non-default values

any_other_function_with_shell_equals_true:
no_shell: [os.execl, os.execle, os.execlp, os.execlpe, os.execv, os.execve,
os.execvp, os.execvpe, os.spawnl, os.spawnle, os.spawnlp, os.spawnlpe,
os.spawnv, os.spawnve, os.spawnvp, os.spawnvpe, os.startfile]

shell: [os.system, os.popen, os.popen2, os.popen3, os.popen4,
popen2.popen2, popen2.popen3, popen2.popen4, popen2.Popen3,
popen2.Popen4, commands.getoutput, commands.getstatusoutput]

subprocess: [subprocess.Popen, subprocess.call, subprocess.check_call,
subprocess.check_output]

If you require several sets of tests for specific tasks, then you should create several config files and pick from them
using -c. If you only wish to control the specific tests that are to be run (and not their parameters) then using -s or -t
on the command line may be more appropriate.

3

http://yaml.org/


Bandit Documentation

1.1.1 Skipping Tests

The bandit config may contain optional lists of test IDs to either include (tests) or exclude (skips). These lists are
equivalent to using -t and -s on the command line. If only tests is given then bandit will include only those tests,
effectively excluding all other tests. If only skips is given then bandit will include all tests not in the skips list. If both
are given then bandit will include only tests in tests and then remove skips from that set. It is an error to include the
same test ID in both tests and skips.

Note that command line options -t/-s can still be used in conjunction with tests and skips given in a config. The result
is to concatenate -t with tests and likewise for -s and skips before working out the tests to run.

1.1.2 Generating a Config

Bandit ships the tool bandit-config-generator designed to take the leg work out of configuration. This tool can generate
a configuration file automatically. The generated configuration will include default config blocks for all detected test
and blacklist plugins. This data can then be deleted or edited as needed to produce a minimal config as desired.
The config generator supports -t and -s command line options to specify a list of test IDs that should be included or
excluded respectively. If no options are given then the generated config will not include tests or skips sections (but
will provide a complete list of all test IDs for reference when editing).

1.1.3 Configuring Test Plugins

Bandit’s configuration file is written in YAML and options for each plugin test are provided under a section named to
match the test method. For example, given a test plugin called ‘try_except_pass’ its configuration section might look
like the following:

try_except_pass:
check_typed_exception: True

The specific content of the configuration block is determined by the plugin test itself. See the plugin test list for
complete information on configuring each one.

1.2 Bandit Test Plugins

Bandit supports many different tests to detect various security issues in python code. These tests are created as plugins
and new ones can be created to extend the functionality offered by bandit today.

1.2.1 Writing Tests

To write a test:

• Identify a vulnerability to build a test for, and create a new file in examples/ that contains one or more
cases of that vulnerability.

• Create a new Python source file to contain your test, you can reference existing tests for examples.

• Consider the vulnerability you’re testing for, mark the function with one or more of the appropriate deco-
rators:

• @checks(‘Call’)

• @checks(‘Import’, ‘ImportFrom’)

• @checks(‘Str’)

4 Chapter 1. Getting Started

http://yaml.org/
plugins/index.html


Bandit Documentation

• Register your plugin using the bandit.plugins entry point, see example.

• The function that you create should take a parameter “context” which is an instance of the context class
you can query for information about the current element being examined. You can also get the raw AST
node for more advanced use cases. Please see the context.py file for more.

• Extend your Bandit configuration file as needed to support your new test.

• Execute Bandit against the test file you defined in examples/ and ensure that it detects the vulnerability.
Consider variations on how this vulnerability might present itself and extend the example file and the test
function accordingly.

1.2.2 Config Generation

In Bandit 1.0+ config files are optional. Plugins that need config settings are required to implement a module global
gen_config function. This function is called with a single parameter, the test plugin name. It should return a dictionary
with keys being the config option names and values being the default settings for each option. An example gen_config
might look like the following:

def gen_config(name):
if name == 'try_except_continue':

return {'check_typed_exception': False}

When no config file is specified, or when the chosen file has no section pertaining to a given plugin, gen_config will
be called to provide defaults.

The config file generation tool bandit-config-generator will also call gen_config on all discovered plugins to produce
template config blocks. If the defaults are acceptable then these blocks may be deleted to create a minimal configura-
tion, or otherwise edited as needed. The above example would produce the following config snippet.

try_except_continue: {check_typed_exception: false}

1.2.3 Example Test Plugin

@bandit.checks('Call')
def prohibit_unsafe_deserialization(context):

if 'unsafe_load' in context.call_function_name_qual:
return bandit.Issue(

severity=bandit.HIGH,
confidence=bandit.HIGH,
text="Unsafe deserialization detected."

)

To register your plugin, you have two options:

1. If you’re using setuptools directly, add something like the following to your setup call:

# If you have an imaginary bson formatter in the bandit_bson module
# and a function called `formatter`.
entry_points={'bandit.formatters': ['bson = bandit_bson:formatter']}
# Or a check for using mako templates in bandit_mako that
entry_points={'bandit.plugins': ['mako = bandit_mako']}

2. If you’re using pbr, add something like the following to your setup.cfg file:

1.2. Bandit Test Plugins 5



Bandit Documentation

[entry_points]
bandit.formatters =

bson = bandit_bson:formatter
bandit.plugins =

mako = bandit_mako

1.2.4 Plugin ID Groupings

ID Description
B1xx misc tests
B2xx application/framework misconfiguration
B3xx blacklists (calls)
B4xx blacklists (imports)
B5xx cryptography
B6xx injection
B7xx XSS

1.2.5 Complete Test Plugin Listing

B101: assert_used

B101: Test for use of assert

This plugin test checks for the use of the Python assert keyword. It was discovered that some projects used assert to
enforce interface constraints. However, assert is removed with compiling to optimised byte code (python -o producing
*.pyo files). This caused various protections to be removed. The use of assert is also considered as general bad practice
in OpenStack codebases.

Please see https://docs.python.org/2/reference/simple_stmts.html#the-assert-statement for more info on assert

Example

>> Issue: Use of assert detected. The enclosed code will be removed when
compiling to optimised byte code.
Severity: Low Confidence: High
Location: ./examples/assert.py:1

1 assert logged_in
2 display_assets()

See also:

• https://bugs.launchpad.net/juniperopenstack/+bug/1456193

• https://bugs.launchpad.net/heat/+bug/1397883

• https://docs.python.org/2/reference/simple_stmts.html#the-assert-statement

New in version 0.11.0.

B102: exec_used

6 Chapter 1. Getting Started

https://docs.python.org/2/reference/simple_stmts.html#the-assert-statement
https://bugs.launchpad.net/juniperopenstack/+bug/1456193
https://bugs.launchpad.net/heat/+bug/1397883
https://docs.python.org/2/reference/simple_stmts.html#the-assert-statement


Bandit Documentation

B102: Test for the use of exec

This plugin test checks for the use of Python’s exec method or keyword. The Python docs succinctly describe why the
use of exec is risky.

Example

>> Issue: Use of exec detected.
Severity: Medium Confidence: High
Location: ./examples/exec-py2.py:2

1 exec("do evil")
2 exec "do evil"

See also:

• https://docs.python.org/2.0/ref/exec.html

• https://www.python.org/dev/peps/pep-0551/#background

• https://www.python.org/dev/peps/pep-0578/#suggested-audit-hook-locations

New in version 0.9.0.

B103: set_bad_file_permissions

B103: Test for setting permissive file permissions

POSIX based operating systems utilize a permissions model to protect access to parts of the file system. This model
supports three roles “owner”, “group” and “world” each role may have a combination of “read”, “write” or “execute”
flags sets. Python provides chmod to manipulate POSIX style permissions.

This plugin test looks for the use of chmod and will alert when it is used to set particularly permissive control flags.
A MEDIUM warning is generated if a file is set to group executable and a HIGH warning is reported if a file is set
world writable. Warnings are given with HIGH confidence.

Example

>> Issue: Probable insecure usage of temp file/directory.
Severity: Medium Confidence: Medium
Location: ./examples/os-chmod-py2.py:15

14 os.chmod('/etc/hosts', 0o777)
15 os.chmod('/tmp/oh_hai', 0x1ff)
16 os.chmod('/etc/passwd', stat.S_IRWXU)

>> Issue: Chmod setting a permissive mask 0777 on file (key_file).
Severity: High Confidence: High
Location: ./examples/os-chmod-py2.py:17

16 os.chmod('/etc/passwd', stat.S_IRWXU)
17 os.chmod(key_file, 0o777)
18

See also:

• https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html # noqa

• https://en.wikipedia.org/wiki/File_system_permissions

• https://security.openstack.org

New in version 0.9.0.

1.2. Bandit Test Plugins 7

https://docs.python.org/2.0/ref/exec.html
https://www.python.org/dev/peps/pep-0551/#background
https://www.python.org/dev/peps/pep-0578/#suggested-audit-hook-locations
https://security.openstack.org/guidelines/dg_apply-restrictive-file-permissions.html
https://en.wikipedia.org/wiki/File_system_permissions
https://security.openstack.org


Bandit Documentation

B104: hardcoded_bind_all_interfaces

B104: Test for binding to all interfaces

Binding to all network interfaces can potentially open up a service to traffic on unintended interfaces, that may not be
properly documented or secured. This plugin test looks for a string pattern “0.0.0.0” that may indicate a hardcoded
binding to all network interfaces.

Example

>> Issue: Possible binding to all interfaces.
Severity: Medium Confidence: Medium
Location: ./examples/binding.py:4

3 s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
4 s.bind(('0.0.0.0', 31137))
5 s.bind(('192.168.0.1', 8080))

See also:

• https://nvd.nist.gov/vuln/detail/CVE-2018-1281

New in version 0.9.0.

B105: hardcoded_password_string

bandit.plugins.general_hardcoded_password.hardcoded_password_string(context)
B105: Test for use of hard-coded password strings

The use of hard-coded passwords increases the possibility of password guessing tremendously. This plugin test
looks for all string literals and checks the following conditions:

• assigned to a variable that looks like a password

• assigned to a dict key that looks like a password

• used in a comparison with a variable that looks like a password

Variables are considered to look like a password if they have match any one of:

• “password”

• “pass”

• “passwd”

• “pwd”

• “secret”

• “token”

• “secrete”

Note: this can be noisy and may generate false positives.

Config Options:

None

Example

8 Chapter 1. Getting Started

https://nvd.nist.gov/vuln/detail/CVE-2018-1281


Bandit Documentation

>> Issue: Possible hardcoded password '(root)'
Severity: Low Confidence: Low
Location: ./examples/hardcoded-passwords.py:5

4 def someFunction2(password):
5 if password == "root":
6 print("OK, logged in")

See also:

• https://www.owasp.org/index.php/Use_of_hard-coded_password

New in version 0.9.0.

B106: hardcoded_password_funcarg

bandit.plugins.general_hardcoded_password.hardcoded_password_funcarg(context)
B106: Test for use of hard-coded password function arguments

The use of hard-coded passwords increases the possibility of password guessing tremendously. This plugin test
looks for all function calls being passed a keyword argument that is a string literal. It checks that the assigned
local variable does not look like a password.

Variables are considered to look like a password if they have match any one of:

• “password”

• “pass”

• “passwd”

• “pwd”

• “secret”

• “token”

• “secrete”

Note: this can be noisy and may generate false positives.

Config Options:

None

Example

>> Issue: [B106:hardcoded_password_funcarg] Possible hardcoded
password: 'blerg'

Severity: Low Confidence: Medium
Location: ./examples/hardcoded-passwords.py:16

15
16 doLogin(password="blerg")

See also:

• https://www.owasp.org/index.php/Use_of_hard-coded_password

New in version 0.9.0.

1.2. Bandit Test Plugins 9

https://www.owasp.org/index.php/Use_of_hard-coded_password
https://www.owasp.org/index.php/Use_of_hard-coded_password


Bandit Documentation

B107: hardcoded_password_default

bandit.plugins.general_hardcoded_password.hardcoded_password_default(context)
B107: Test for use of hard-coded password argument defaults

The use of hard-coded passwords increases the possibility of password guessing tremendously. This plugin
test looks for all function definitions that specify a default string literal for some argument. It checks that the
argument does not look like a password.

Variables are considered to look like a password if they have match any one of:

• “password”

• “pass”

• “passwd”

• “pwd”

• “secret”

• “token”

• “secrete”

Note: this can be noisy and may generate false positives.

Config Options:

None

Example

>> Issue: [B107:hardcoded_password_default] Possible hardcoded
password: 'Admin'

Severity: Low Confidence: Medium
Location: ./examples/hardcoded-passwords.py:1

1 def someFunction(user, password="Admin"):
2 print("Hi " + user)

See also:

• https://www.owasp.org/index.php/Use_of_hard-coded_password

New in version 0.9.0.

B108: hardcoded_tmp_directory

B108: Test for insecure usage of tmp file/directory

Safely creating a temporary file or directory means following a number of rules (see the references for more details).
This plugin test looks for strings starting with (configurable) commonly used temporary paths, for example:

• /tmp

• /var/tmp

• /dev/shm

• etc

10 Chapter 1. Getting Started

https://www.owasp.org/index.php/Use_of_hard-coded_password


Bandit Documentation

Config Options:

This test plugin takes a similarly named config block, hardcoded_tmp_directory. The config block provides a Python
list, tmp_dirs, that lists string fragments indicating possible temporary file paths. Any string starting with one of these
fragments will report a MEDIUM confidence issue.

hardcoded_tmp_directory:
tmp_dirs: ['/tmp', '/var/tmp', '/dev/shm']

Example

See also:

• https://security.openstack.org/guidelines/dg_using-temporary-files-securely.html # noqa

New in version 0.9.0.

B109: Test for a password based config option not marked secret

This plugin has been removed.

Passwords are sensitive and must be protected appropriately. In OpenStack Oslo there is an option to mark options
“secret” which will ensure that they are not logged. This plugin detects usages of oslo configuration functions that
appear to deal with strings ending in ‘password’ and flag usages where they have not been marked secret.

If such a value is found a MEDIUM severity error is generated. If ‘False’ or ‘None’ are explicitly set, Bandit will
return a MEDIUM confidence issue. If Bandit can’t determine the value of secret it will return a LOW confidence
issue.

B110: try_except_pass

B110: Test for a pass in the except block

Errors in Python code bases are typically communicated using Exceptions. An exception object is ‘raised’ in the
event of an error and can be ‘caught’ at a later point in the program, typically some error handling or logging action
will then be performed.

However, it is possible to catch an exception and silently ignore it. This is illustrated with the following example

try:
do_some_stuff()

except Exception:
pass

This pattern is considered bad practice in general, but also represents a potential security issue. A larger than normal
volume of errors from a service can indicate an attempt is being made to disrupt or interfere with it. Thus errors
should, at the very least, be logged.

There are rare situations where it is desirable to suppress errors, but this is typically done with specific exception
types, rather than the base Exception class (or no type). To accommodate this, the test may be configured to ignore
‘try, except, pass’ where the exception is typed. For example, the following would not generate a warning if the
configuration option checked_typed_exception is set to False:

try:
do_some_stuff()

except ZeroDivisionError:
pass

1.2. Bandit Test Plugins 11

https://security.openstack.org/guidelines/dg_using-temporary-files-securely.html


Bandit Documentation

Config Options:

try_except_pass:
check_typed_exception: True

Example

>> Issue: Try, Except, Pass detected.
Severity: Low Confidence: High
Location: ./examples/try_except_pass.py:4

3 a = 1
4 except:
5 pass

See also:

• https://security.openstack.org

New in version 0.13.0.

B111: Test for the use of rootwrap running as root

This plugin has been removed.

Running commands as root dramatically increase their potential risk. Running commands with restricted user privi-
leges provides defense in depth against command injection attacks, or developer and configuration error. This plugin
test checks for specific methods being called with a keyword parameter run_as_root set to True, a common OpenStack
idiom.

B112: try_except_continue

B112: Test for a continue in the except block

Errors in Python code bases are typically communicated using Exceptions. An exception object is ‘raised’ in the
event of an error and can be ‘caught’ at a later point in the program, typically some error handling or logging action
will then be performed.

However, it is possible to catch an exception and silently ignore it while in a loop. This is illustrated with the following
example

while keep_going:
try:
do_some_stuff()

except Exception:
continue

This pattern is considered bad practice in general, but also represents a potential security issue. A larger than normal
volume of errors from a service can indicate an attempt is being made to disrupt or interfere with it. Thus errors
should, at the very least, be logged.

There are rare situations where it is desirable to suppress errors, but this is typically done with specific exception
types, rather than the base Exception class (or no type). To accommodate this, the test may be configured to ignore
‘try, except, continue’ where the exception is typed. For example, the following would not generate a warning if the
configuration option checked_typed_exception is set to False:

12 Chapter 1. Getting Started

https://security.openstack.org


Bandit Documentation

while keep_going:
try:
do_some_stuff()

except ZeroDivisionError:
continue

Config Options:

try_except_continue:
check_typed_exception: True

Example

>> Issue: Try, Except, Continue detected.
Severity: Low Confidence: High
Location: ./examples/try_except_continue.py:5

4 a = i
5 except:
6 continue

See also:

• https://security.openstack.org

New in version 1.0.0.

B201: flask_debug_true

B201: Test for use of flask app with debug set to true

Running Flask applications in debug mode results in the Werkzeug debugger being enabled. This includes a feature
that allows arbitrary code execution. Documentation for both Flask1 and Werkzeug2 strongly suggests that debug
mode should never be enabled on production systems.

Operating a production server with debug mode enabled was the probable cause of the Patreon breach in 20153.

Example

>> Issue: A Flask app appears to be run with debug=True, which exposes
the Werkzeug debugger and allows the execution of arbitrary code.

Severity: High Confidence: High
Location: examples/flask_debug.py:10
9 #bad
10 app.run(debug=True)
11

See also:

New in version 0.15.0.

B501: request_with_no_cert_validation

1 http://flask.pocoo.org/docs/0.10/quickstart/#debug-mode
2 http://werkzeug.pocoo.org/docs/0.10/debug/
3 http://labs.detectify.com/post/130332638391/how-patreon-got-hacked-publicly-exposed-werkzeug # noqa

1.2. Bandit Test Plugins 13

https://security.openstack.org
http://flask.pocoo.org/docs/0.10/quickstart/#debug-mode
http://werkzeug.pocoo.org/docs/0.10/debug/
http://labs.detectify.com/post/130332638391/how-patreon-got-hacked-publicly-exposed-werkzeug


Bandit Documentation

B501: Test for missing certificate validation

Encryption in general is typically critical to the security of many applications. Using TLS can greatly increase security
by guaranteeing the identity of the party you are communicating with. This is accomplished by one or both parties
presenting trusted certificates during the connection initialization phase of TLS.

When request methods are used certificates are validated automatically which is the desired behavior. If certificate
validation is explicitly turned off Bandit will return a HIGH severity error.

Example

>> Issue: [request_with_no_cert_validation] Requests call with verify=False
disabling SSL certificate checks, security issue.

Severity: High Confidence: High
Location: examples/requests-ssl-verify-disabled.py:4

3 requests.get('https://gmail.com', verify=True)
4 requests.get('https://gmail.com', verify=False)
5 requests.post('https://gmail.com', verify=True)

See also:

• https://security.openstack.org/guidelines/dg_move-data-securely.html

• https://security.openstack.org/guidelines/dg_validate-certificates.html

New in version 0.9.0.

B502: ssl_with_bad_version

bandit.plugins.insecure_ssl_tls.ssl_with_bad_version(context, config)
B502: Test for SSL use with bad version used

Several highly publicized exploitable flaws have been discovered in all versions of SSL and early versions of
TLS. It is strongly recommended that use of the following known broken protocol versions be avoided:

• SSL v2

• SSL v3

• TLS v1

• TLS v1.1

This plugin test scans for calls to Python methods with parameters that indicate the used broken SSL/TLS proto-
col versions. Currently, detection supports methods using Python’s native SSL/TLS support and the pyOpenSSL
module. A HIGH severity warning will be reported whenever known broken protocol versions are detected.

It is worth noting that native support for TLS 1.2 is only available in more recent Python versions, specifically
2.7.9 and up, and 3.x

A note on ‘SSLv23’:

Amongst the available SSL/TLS versions provided by Python/pyOpenSSL there exists the option to use SSLv23.
This very poorly named option actually means “use the highest version of SSL/TLS supported by both the server
and client”. This may (and should be) a version well in advance of SSL v2 or v3. Bandit can scan for the use of
SSLv23 if desired, but its detection does not necessarily indicate a problem.

When using SSLv23 it is important to also provide flags to explicitly exclude bad versions of SSL/TLS from
the protocol versions considered. Both the Python native and pyOpenSSL modules provide the OP_NO_SSLv2
and OP_NO_SSLv3 flags for this purpose.

Config Options:

14 Chapter 1. Getting Started

https://security.openstack.org/guidelines/dg_move-data-securely.html
https://security.openstack.org/guidelines/dg_validate-certificates.html


Bandit Documentation

ssl_with_bad_version:
bad_protocol_versions:

- PROTOCOL_SSLv2
- SSLv2_METHOD
- SSLv23_METHOD
- PROTOCOL_SSLv3 # strict option
- PROTOCOL_TLSv1 # strict option
- SSLv3_METHOD # strict option
- TLSv1_METHOD # strict option

Example

>> Issue: ssl.wrap_socket call with insecure SSL/TLS protocol version
identified, security issue.

Severity: High Confidence: High
Location: ./examples/ssl-insecure-version.py:13

12 # strict tests
13 ssl.wrap_socket(ssl_version=ssl.PROTOCOL_SSLv3)
14 ssl.wrap_socket(ssl_version=ssl.PROTOCOL_TLSv1)

See also:

• ssl_with_bad_defaults()

• ssl_with_no_version()

• http://heartbleed.com/

• https://poodlebleed.com/

• https://security.openstack.org/

• https://security.openstack.org/guidelines/dg_move-data-securely.html

New in version 0.9.0.

B503: ssl_with_bad_defaults

bandit.plugins.insecure_ssl_tls.ssl_with_bad_defaults(context, config)
B503: Test for SSL use with bad defaults specified

This plugin is part of a family of tests that detect the use of known bad versions of SSL/TLS, please see ../plu-
gins/ssl_with_bad_version for a complete discussion. Specifically, this plugin test scans for Python methods
with default parameter values that specify the use of broken SSL/TLS protocol versions. Currently, detection
supports methods using Python’s native SSL/TLS support and the pyOpenSSL module. A MEDIUM severity
warning will be reported whenever known broken protocol versions are detected.

Config Options:

This test shares the configuration provided for the standard ../plugins/ssl_with_bad_version test, please refer to
its documentation.

Example

>> Issue: Function definition identified with insecure SSL/TLS protocol
version by default, possible security issue.

Severity: Medium Confidence: Medium

(continues on next page)

1.2. Bandit Test Plugins 15

http://heartbleed.com/
https://poodlebleed.com/
https://security.openstack.org/
https://security.openstack.org/guidelines/dg_move-data-securely.html


Bandit Documentation

(continued from previous page)

Location: ./examples/ssl-insecure-version.py:28
27
28 def open_ssl_socket(version=SSL.SSLv2_METHOD):
29 pass

See also:

• ssl_with_bad_version()

• ssl_with_no_version()

• http://heartbleed.com/

• https://poodlebleed.com/

• https://security.openstack.org/

• https://security.openstack.org/guidelines/dg_move-data-securely.html

New in version 0.9.0.

B504: ssl_with_no_version

bandit.plugins.insecure_ssl_tls.ssl_with_no_version(context)
B504: Test for SSL use with no version specified

This plugin is part of a family of tests that detect the use of known bad versions of SSL/TLS, please see ../plug-
ins/ssl_with_bad_version for a complete discussion. Specifically, This plugin test scans for specific methods in
Python’s native SSL/TLS support and the pyOpenSSL module that configure the version of SSL/TLS protocol
to use. These methods are known to provide default value that maximize compatibility, but permit use of the
aforementioned broken protocol versions. A LOW severity warning will be reported whenever this is detected.

Config Options:

This test shares the configuration provided for the standard ../plugins/ssl_with_bad_version test, please refer to
its documentation.

Example

>> Issue: ssl.wrap_socket call with no SSL/TLS protocol version
specified, the default SSLv23 could be insecure, possible security
issue.

Severity: Low Confidence: Medium
Location: ./examples/ssl-insecure-version.py:23

22
23 ssl.wrap_socket()
24

See also:

• ssl_with_bad_version()

• ssl_with_bad_defaults()

• http://heartbleed.com/

• https://poodlebleed.com/

• https://security.openstack.org/

16 Chapter 1. Getting Started

http://heartbleed.com/
https://poodlebleed.com/
https://security.openstack.org/
https://security.openstack.org/guidelines/dg_move-data-securely.html
http://heartbleed.com/
https://poodlebleed.com/
https://security.openstack.org/


Bandit Documentation

• https://security.openstack.org/guidelines/dg_move-data-securely.html

New in version 0.9.0.

B505: weak_cryptographic_key

B505: Test for weak cryptographic key use

As computational power increases, so does the ability to break ciphers with smaller key lengths. The recommended
key length size for RSA and DSA algorithms is 2048 and higher. 1024 bits and below are now considered breakable.
EC key length sizes are recommended to be 224 and higher with 160 and below considered breakable. This plugin test
checks for use of any key less than those limits and returns a high severity error if lower than the lower threshold and
a medium severity error for those lower than the higher threshold.

Example

>> Issue: DSA key sizes below 1024 bits are considered breakable.
Severity: High Confidence: High
Location: examples/weak_cryptographic_key_sizes.py:36

35 # Also incorrect: without keyword args
36 dsa.generate_private_key(512,
37 backends.default_backend())
38 rsa.generate_private_key(3,

See also:

• http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf

• https://security.openstack.org/guidelines/dg_strong-crypto.html

New in version 0.14.0.

B506: yaml_load

B506: Test for use of yaml load

This plugin test checks for the unsafe usage of the yaml.load function from the PyYAML package. The yaml.load
function provides the ability to construct an arbitrary Python object, which may be dangerous if you receive a YAML
document from an untrusted source. The function yaml.safe_load limits this ability to simple Python objects like
integers or lists.

Please see http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML for more information on yaml.load
and yaml.safe_load

Example

>> Issue: [yaml_load] Use of unsafe yaml load. Allows instantiation of arbitrary objects. Con-
sider yaml.safe_load(). Severity: Medium Confidence: High Location: exam-
ples/yaml_load.py:5

4 ystr = yaml.dump({‘a’ : 1, ‘b’ : 2, ‘c’ : 3}) 5 y = yaml.load(ystr) 6 yaml.dump(y)

See also:

• http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML

New in version 1.0.0.

1.2. Bandit Test Plugins 17

https://security.openstack.org/guidelines/dg_move-data-securely.html
http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf
https://security.openstack.org/guidelines/dg_strong-crypto.html
http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML
http://pyyaml.org/wiki/PyYAMLDocumentation#LoadingYAML


Bandit Documentation

B507: ssh_no_host_key_verification

B507: Test for missing host key validation

Encryption in general is typically critical to the security of many applications. Using SSH can greatly increase security
by guaranteeing the identity of the party you are communicating with. This is accomplished by one or both parties
presenting trusted host keys during the connection initialization phase of SSH.

When paramiko methods are used, host keys are verified by default. If host key verification is disabled, Bandit will
return a HIGH severity error.

Example

>> Issue: [B507:ssh_no_host_key_verification] Paramiko call with policy set
to automatically trust the unknown host key.
Severity: High Confidence: Medium
Location: examples/no_host_key_verification.py:4
3 ssh_client = client.SSHClient()
4 ssh_client.set_missing_host_key_policy(client.AutoAddPolicy)
5 ssh_client.set_missing_host_key_policy(client.WarningPolicy)

New in version 1.5.1.

B601: paramiko_calls

B601: Test for shell injection within Paramiko

Paramiko is a Python library designed to work with the SSH2 protocol for secure (encrypted and authenticated)
connections to remote machines. It is intended to run commands on a remote host. These commands are run within
a shell on the target and are thus vulnerable to various shell injection attacks. Bandit reports a MEDIUM issue when
it detects the use of Paramiko’s “exec_command” or “invoke_shell” methods advising the user to check inputs are
correctly sanitized.

Example

>> Issue: Possible shell injection via Paramiko call, check inputs are
properly sanitized.
Severity: Medium Confidence: Medium
Location: ./examples/paramiko_injection.py:4

3 # this is not safe
4 paramiko.exec_command('something; reallly; unsafe')
5

>> Issue: Possible shell injection via Paramiko call, check inputs are
properly sanitized.
Severity: Medium Confidence: Medium
Location: ./examples/paramiko_injection.py:10

9 # this is not safe
10 SSHClient.invoke_shell('something; bad; here\n')
11

See also:

• https://security.openstack.org

• https://github.com/paramiko/paramiko

• https://www.owasp.org/index.php/Command_Injection

18 Chapter 1. Getting Started

https://security.openstack.org
https://github.com/paramiko/paramiko
https://www.owasp.org/index.php/Command_Injection


Bandit Documentation

New in version 0.12.0.

B602: subprocess_popen_with_shell_equals_true

bandit.plugins.injection_shell.subprocess_popen_with_shell_equals_true(context,
con-
fig)

B602: Test for use of popen with shell equals true

Python possesses many mechanisms to invoke an external executable. However, doing so may present a security
issue if appropriate care is not taken to sanitize any user provided or variable input.

This plugin test is part of a family of tests built to check for process spawning and warn appropriately. Specifi-
cally, this test looks for the spawning of a subprocess using a command shell. This type of subprocess invocation
is dangerous as it is vulnerable to various shell injection attacks. Great care should be taken to sanitize all input
in order to mitigate this risk. Calls of this type are identified by a parameter of ‘shell=True’ being given.

Additionally, this plugin scans the command string given and adjusts its reported severity based on how it
is presented. If the command string is a simple static string containing no special shell characters, then the
resulting issue has low severity. If the string is static, but contains shell formatting characters or wildcards, then
the reported issue is medium. Finally, if the string is computed using Python’s string manipulation or formatting
operations, then the reported issue has high severity. These severity levels reflect the likelihood that the code is
vulnerable to injection.

See also:

• ../plugins/linux_commands_wildcard_injection

• ../plugins/subprocess_without_shell_equals_true

• ../plugins/start_process_with_no_shell

• ../plugins/start_process_with_a_shell

• ../plugins/start_process_with_partial_path

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

This plugin specifically scans for methods listed in subprocess section that have shell=True specified.

shell_injection:

# Start a process using the subprocess module, or one of its
wrappers.
subprocess:

- subprocess.Popen
- subprocess.call

Example

>> Issue: subprocess call with shell=True seems safe, but may be
changed in the future, consider rewriting without shell

Severity: Low Confidence: High
Location: ./examples/subprocess_shell.py:21

(continues on next page)

1.2. Bandit Test Plugins 19



Bandit Documentation

(continued from previous page)

20 subprocess.check_call(['/bin/ls', '-l'], shell=False)
21 subprocess.check_call('/bin/ls -l', shell=True)
22

>> Issue: call with shell=True contains special shell characters,
consider moving extra logic into Python code

Severity: Medium Confidence: High
Location: ./examples/subprocess_shell.py:26

25
26 subprocess.Popen('/bin/ls *', shell=True)
27 subprocess.Popen('/bin/ls %s' % ('something',), shell=True)

>> Issue: subprocess call with shell=True identified, security issue.
Severity: High Confidence: High
Location: ./examples/subprocess_shell.py:27

26 subprocess.Popen('/bin/ls *', shell=True)
27 subprocess.Popen('/bin/ls %s' % ('something',), shell=True)
28 subprocess.Popen('/bin/ls {}'.format('something'), shell=True)

See also:

• https://security.openstack.org

• https://docs.python.org/2/library/subprocess.html#frequently-used-arguments # noqa

• https://security.openstack.org/guidelines/dg_use-subprocess-securely.html

• https://security.openstack.org/guidelines/dg_avoid-shell-true.html

New in version 0.9.0.

B603: subprocess_without_shell_equals_true

bandit.plugins.injection_shell.subprocess_without_shell_equals_true(context,
config)

B603: Test for use of subprocess with shell equals true

Python possesses many mechanisms to invoke an external executable. However, doing so may present a security
issue if appropriate care is not taken to sanitize any user provided or variable input.

This plugin test is part of a family of tests built to check for process spawning and warn appropriately. Specif-
ically, this test looks for the spawning of a subprocess without the use of a command shell. This type of
subprocess invocation is not vulnerable to shell injection attacks, but care should still be taken to ensure validity
of input.

Because this is a lesser issue than that described in subprocess_popen_with_shell_equals_true a LOW severity
warning is reported.

See also:

• ../plugins/linux_commands_wildcard_injection

• ../plugins/subprocess_popen_with_shell_equals_true

• ../plugins/start_process_with_no_shell

• ../plugins/start_process_with_a_shell

• ../plugins/start_process_with_partial_path

20 Chapter 1. Getting Started

https://security.openstack.org
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html
https://security.openstack.org/guidelines/dg_avoid-shell-true.html


Bandit Documentation

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

This plugin specifically scans for methods listed in subprocess section that have shell=False specified.

shell_injection:
# Start a process using the subprocess module, or one of its
wrappers.
subprocess:

- subprocess.Popen
- subprocess.call

Example

>> Issue: subprocess call - check for execution of untrusted input.
Severity: Low Confidence: High
Location: ./examples/subprocess_shell.py:23

22
23 subprocess.check_output(['/bin/ls', '-l'])
24

See also:

• https://security.openstack.org

• https://docs.python.org/2/library/subprocess.html#frequently-used-arguments # noqa

• https://security.openstack.org/guidelines/dg_avoid-shell-true.html

• https://security.openstack.org/guidelines/dg_use-subprocess-securely.html

New in version 0.9.0.

B604: any_other_function_with_shell_equals_true

bandit.plugins.injection_shell.any_other_function_with_shell_equals_true(context,
con-
fig)

B604: Test for any function with shell equals true

Python possesses many mechanisms to invoke an external executable. However, doing so may present a security
issue if appropriate care is not taken to sanitize any user provided or variable input.

This plugin test is part of a family of tests built to check for process spawning and warn appropriately. Specifi-
cally, this plugin test interrogates method calls for the presence of a keyword parameter shell equalling true. It
is related to detection of shell injection issues and is intended to catch custom wrappers to vulnerable methods
that may have been created.

See also:

• ../plugins/linux_commands_wildcard_injection

• ../plugins/subprocess_popen_with_shell_equals_true

• ../plugins/subprocess_without_shell_equals_true

1.2. Bandit Test Plugins 21

https://security.openstack.org
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://security.openstack.org/guidelines/dg_avoid-shell-true.html
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html


Bandit Documentation

• ../plugins/start_process_with_no_shell

• ../plugins/start_process_with_a_shell

• ../plugins/start_process_with_partial_path

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

Specifically, this plugin excludes those functions listed under the subprocess section, these methods are tested
in a separate specific test plugin and this exclusion prevents duplicate issue reporting.

shell_injection:
# Start a process using the subprocess module, or one of its
wrappers.
subprocess: [subprocess.Popen, subprocess.call,

subprocess.check_call, subprocess.check_output
execute_with_timeout]

Example

>> Issue: Function call with shell=True parameter identified, possible
security issue.

Severity: Medium Confidence: High
Location: ./examples/subprocess_shell.py:9

8 pop('/bin/gcc --version', shell=True)
9 Popen('/bin/gcc --version', shell=True)
10

See also:

• https://security.openstack.org/guidelines/dg_avoid-shell-true.html

• https://security.openstack.org/guidelines/dg_use-subprocess-securely.html # noqa

New in version 0.9.0.

B605: start_process_with_a_shell

bandit.plugins.injection_shell.start_process_with_a_shell(context, config)
B605: Test for starting a process with a shell

Python possesses many mechanisms to invoke an external executable. However, doing so may present a security
issue if appropriate care is not taken to sanitize any user provided or variable input.

This plugin test is part of a family of tests built to check for process spawning and warn appropriately. Specifi-
cally, this test looks for the spawning of a subprocess using a command shell. This type of subprocess invocation
is dangerous as it is vulnerable to various shell injection attacks. Great care should be taken to sanitize all input
in order to mitigate this risk. Calls of this type are identified by the use of certain commands which are known
to use shells. Bandit will report a LOW severity warning.

See also:

• ../plugins/linux_commands_wildcard_injection

22 Chapter 1. Getting Started

https://security.openstack.org/guidelines/dg_avoid-shell-true.html
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html


Bandit Documentation

• ../plugins/subprocess_without_shell_equals_true

• ../plugins/start_process_with_no_shell

• ../plugins/start_process_with_partial_path

• ../plugins/subprocess_popen_with_shell_equals_true

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

This plugin specifically scans for methods listed in shell section.

shell_injection:
shell:

- os.system
- os.popen
- os.popen2
- os.popen3
- os.popen4
- popen2.popen2
- popen2.popen3
- popen2.popen4
- popen2.Popen3
- popen2.Popen4
- commands.getoutput
- commands.getstatusoutput

Example

>> Issue: Starting a process with a shell: check for injection.
Severity: Low Confidence: Medium
Location: examples/os_system.py:3

2
3 os.system('/bin/echo hi')

See also:

• https://security.openstack.org

• https://docs.python.org/2/library/os.html#os.system

• https://docs.python.org/2/library/subprocess.html#frequently-used-arguments # noqa

• https://security.openstack.org/guidelines/dg_use-subprocess-securely.html

New in version 0.10.0.

B606: start_process_with_no_shell

bandit.plugins.injection_shell.start_process_with_no_shell(context, config)
B606: Test for starting a process with no shell

Python possesses many mechanisms to invoke an external executable. However, doing so may present a security
issue if appropriate care is not taken to sanitize any user provided or variable input.

1.2. Bandit Test Plugins 23

https://security.openstack.org
https://docs.python.org/2/library/os.html#os.system
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html


Bandit Documentation

This plugin test is part of a family of tests built to check for process spawning and warn appropriately. Specifi-
cally, this test looks for the spawning of a subprocess in a way that doesn’t use a shell. Although this is generally
safe, it maybe useful for penetration testing workflows to track where external system calls are used. As such a
LOW severity message is generated.

See also:

• ../plugins/linux_commands_wildcard_injection

• ../plugins/subprocess_without_shell_equals_true

• ../plugins/start_process_with_a_shell

• ../plugins/start_process_with_partial_path

• ../plugins/subprocess_popen_with_shell_equals_true

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

This plugin specifically scans for methods listed in no_shell section.

shell_injection:
no_shell:

- os.execl
- os.execle
- os.execlp
- os.execlpe
- os.execv
- os.execve
- os.execvp
- os.execvpe
- os.spawnl
- os.spawnle
- os.spawnlp
- os.spawnlpe
- os.spawnv
- os.spawnve
- os.spawnvp
- os.spawnvpe
- os.startfile

Example

>> Issue: [start_process_with_no_shell] Starting a process without a
shell.
Severity: Low Confidence: Medium
Location: examples/os-spawn.py:8

7 os.spawnv(mode, path, args)
8 os.spawnve(mode, path, args, env)
9 os.spawnvp(mode, file, args)

See also:

• https://security.openstack.org

24 Chapter 1. Getting Started

https://security.openstack.org


Bandit Documentation

• https://docs.python.org/2/library/os.html#os.system

• https://docs.python.org/2/library/subprocess.html#frequently-used-arguments # noqa

• https://security.openstack.org/guidelines/dg_use-subprocess-securely.html

New in version 0.10.0.

B607: start_process_with_partial_path

bandit.plugins.injection_shell.start_process_with_partial_path(context, config)
B607: Test for starting a process with a partial path

Python possesses many mechanisms to invoke an external executable. If the desired executable path is not fully
qualified relative to the filesystem root then this may present a potential security risk.

In POSIX environments, the PATH environment variable is used to specify a set of standard locations that will
be searched for the first matching named executable. While convenient, this behavior may allow a malicious
actor to exert control over a system. If they are able to adjust the contents of the PATH variable, or manipulate
the file system, then a bogus executable may be discovered in place of the desired one. This executable will be
invoked with the user privileges of the Python process that spawned it, potentially a highly privileged user.

This test will scan the parameters of all configured Python methods, looking for paths that do not start at the
filesystem root, that is, do not have a leading ‘/’ character.

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configura-
tion is divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn
subprocesses, invoke commands within a shell, or invoke commands without a shell (by replacing the calling
process) respectively.

This test will scan parameters of all methods in all sections. Note that methods are fully qualified and de-aliased
prior to checking.

shell_injection:
# Start a process using the subprocess module, or one of its
wrappers.
subprocess:

- subprocess.Popen
- subprocess.call

# Start a process with a function vulnerable to shell injection.
shell:

- os.system
- os.popen
- popen2.Popen3
- popen2.Popen4
- commands.getoutput
- commands.getstatusoutput

# Start a process with a function that is not vulnerable to shell
injection.
no_shell:

- os.execl
- os.execle

Example

1.2. Bandit Test Plugins 25

https://docs.python.org/2/library/os.html#os.system
https://docs.python.org/2/library/subprocess.html#frequently-used-arguments
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html


Bandit Documentation

>> Issue: Starting a process with a partial executable path
Severity: Low Confidence: High
Location: ./examples/partial_path_process.py:3
2 from subprocess import Popen as pop
3 pop('gcc --version', shell=False)

See also:

• https://security.openstack.org

• https://docs.python.org/2/library/os.html#process-management

New in version 0.13.0.

B608: hardcoded_sql_expressions

B608: Test for SQL injection

An SQL injection attack consists of insertion or “injection” of a SQL query via the input data given to an application.
It is a very common attack vector. This plugin test looks for strings that resemble SQL statements that are involved in
some form of string building operation. For example:

• “SELECT %s FROM derp;” % var

• “SELECT thing FROM ” + tab

• “SELECT ” + val + ” FROM ” + tab + . . .

• “SELECT {} FROM derp;”.format(var)

Unless care is taken to sanitize and control the input data when building such SQL statement strings, an injection
attack becomes possible. If strings of this nature are discovered, a LOW confidence issue is reported. In order to boost
result confidence, this plugin test will also check to see if the discovered string is in use with standard Python DBAPI
calls execute or executemany. If so, a MEDIUM issue is reported. For example:

• cursor.execute(“SELECT %s FROM derp;” % var)

Example

>> Issue: Possible SQL injection vector through string-based query
construction.

Severity: Medium Confidence: Low
Location: ./examples/sql_statements_without_sql_alchemy.py:4

3 query = "DELETE FROM foo WHERE id = '%s'" % identifier
4 query = "UPDATE foo SET value = 'b' WHERE id = '%s'" % identifier
5

See also:

• https://www.owasp.org/index.php/SQL_Injection

• https://security.openstack.org/guidelines/dg_parameterize-database-queries.html # noqa

New in version 0.9.0.

26 Chapter 1. Getting Started

https://security.openstack.org
https://docs.python.org/2/library/os.html#process-management
https://www.owasp.org/index.php/SQL_Injection
https://security.openstack.org/guidelines/dg_parameterize-database-queries.html


Bandit Documentation

B609: linux_commands_wildcard_injection

B609: Test for use of wildcard injection

Python provides a number of methods that emulate the behavior of standard Linux command line utilities. Like their
Linux counterparts, these commands may take a wildcard “*” character in place of a file system path. This is inter-
preted to mean “any and all files or folders” and can be used to build partially qualified paths, such as “/home/user/*”.

The use of partially qualified paths may result in unintended consequences if an unexpected file or symlink is placed
into the path location given. This becomes particularly dangerous when combined with commands used to manipulate
file permissions or copy data off of a system.

This test plugin looks for usage of the following commands in conjunction with wild card parameters:

• ‘chown’

• ‘chmod’

• ‘tar’

• ‘rsync’

As well as any method configured in the shell or subprocess injection test configurations.

Config Options:

This plugin test shares a configuration with others in the same family, namely shell_injection. This configuration is
divided up into three sections, subprocess, shell and no_shell. They each list Python calls that spawn subprocesses,
invoke commands within a shell, or invoke commands without a shell (by replacing the calling process) respectively.

This test will scan parameters of all methods in all sections. Note that methods are fully qualified and de-aliased prior
to checking.

shell_injection:
# Start a process using the subprocess module, or one of its wrappers.
subprocess:

- subprocess.Popen
- subprocess.call

# Start a process with a function vulnerable to shell injection.
shell:

- os.system
- os.popen
- popen2.Popen3
- popen2.Popen4
- commands.getoutput
- commands.getstatusoutput

# Start a process with a function that is not vulnerable to shell
injection.
no_shell:

- os.execl
- os.execle

Example

>> Issue: Possible wildcard injection in call: subprocess.Popen
Severity: High Confidence: Medium
Location: ./examples/wildcard-injection.py:8

7 o.popen2('/bin/chmod *')
8 subp.Popen('/bin/chown *', shell=True)

(continues on next page)

1.2. Bandit Test Plugins 27



Bandit Documentation

(continued from previous page)

9

>> Issue: subprocess call - check for execution of untrusted input.
Severity: Low Confidence: High
Location: ./examples/wildcard-injection.py:11

10 # Not vulnerable to wildcard injection
11 subp.Popen('/bin/rsync *')
12 subp.Popen("/bin/chmod *")

See also:

• https://security.openstack.org

• https://en.wikipedia.org/wiki/Wildcard_character

• http://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt

New in version 0.9.0.

B610: django_extra_used

B610: django_rawsql_used

B701: jinja2_autoescape_false

B701: Test for not auto escaping in jinja2

Jinja2 is a Python HTML templating system. It is typically used to build web applications, though appears in other
places well, notably the Ansible automation system. When configuring the Jinja2 environment, the option to use
autoescaping on input can be specified. When autoescaping is enabled, Jinja2 will filter input strings to escape any
HTML content submitted via template variables. Without escaping HTML input the application becomes vulnerable
to Cross Site Scripting (XSS) attacks.

Unfortunately, autoescaping is False by default. Thus this plugin test will warn on omission of an autoescape setting,
as well as an explicit setting of false. A HIGH severity warning is generated in either of these scenarios.

Example

>> Issue: Using jinja2 templates with autoescape=False is dangerous and can
lead to XSS. Use autoescape=True to mitigate XSS vulnerabilities.

Severity: High Confidence: High
Location: ./examples/jinja2_templating.py:11

10 templateEnv = jinja2.Environment(autoescape=False,
loader=templateLoader)

11 Environment(loader=templateLoader,
12 load=templateLoader,
13 autoescape=False)
14

>> Issue: By default, jinja2 sets autoescape to False. Consider using
autoescape=True or use the select_autoescape function to mitigate XSS
vulnerabilities.

Severity: High Confidence: High
Location: ./examples/jinja2_templating.py:15

14
15 Environment(loader=templateLoader,

(continues on next page)

28 Chapter 1. Getting Started

https://security.openstack.org
https://en.wikipedia.org/wiki/Wildcard_character
http://www.defensecode.com/public/DefenseCode_Unix_WildCards_Gone_Wild.txt


Bandit Documentation

(continued from previous page)

16 load=templateLoader)
17
18 Environment(autoescape=select_autoescape(['html', 'htm', 'xml']),
19 loader=templateLoader)

See also:

• OWASP XSS

• https://realpython.com/blog/python/primer-on-jinja-templating/

• http://jinja.pocoo.org/docs/dev/api/#autoescaping

• https://security.openstack.org

• https://security.openstack.org/guidelines/dg_cross-site-scripting-xss.html

New in version 0.10.0.

B702: use_of_mako_templates

B702: Test for use of mako templates

Mako is a Python templating system often used to build web applications. It is the default templating system used
in Pylons and Pyramid. Unlike Jinja2 (an alternative templating system), Mako has no environment wide variable
escaping mechanism. Because of this, all input variables must be carefully escaped before use to prevent possible
vulnerabilities to Cross Site Scripting (XSS) attacks.

Example

>> Issue: Mako templates allow HTML/JS rendering by default and are
inherently open to XSS attacks. Ensure variables in all templates are
properly sanitized via the 'n', 'h' or 'x' flags (depending on context).
For example, to HTML escape the variable 'data' do ${ data |h }.

Severity: Medium Confidence: High
Location: ./examples/mako_templating.py:10

9
10 mako.template.Template("hern")
11 template.Template("hern")

See also:

• http://www.makotemplates.org/

• OWASP XSS

• https://security.openstack.org

• https://security.openstack.org/guidelines/dg_cross-site-scripting-xss.html

New in version 0.10.0.

1.2. Bandit Test Plugins 29

https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://realpython.com/blog/python/primer-on-jinja-templating/
http://jinja.pocoo.org/docs/dev/api/#autoescaping
https://security.openstack.org
https://security.openstack.org/guidelines/dg_cross-site-scripting-xss.html
http://www.makotemplates.org/
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://security.openstack.org
https://security.openstack.org/guidelines/dg_cross-site-scripting-xss.html


Bandit Documentation

B703: django_mark_safe

1.3 Bandit Blacklist Plugins

Bandit supports built in functionality to implement blacklisting of imports and function calls, this functionality is
provided by built in test ‘B001’. This test may be filtered as per normal plugin filtering rules.

The exact calls and imports that are blacklisted, and the issues reported, are controlled by plugin methods with the entry
point ‘bandit.blacklists’ and can be extended by third party plugins if desired. Blacklist plugins will be discovered by
Bandit at startup and called. The returned results are combined into the final data set, subject to Bandit’s normal test
include/exclude rules allowing for fine grained control over blacklisted items. By convention, blacklisted calls should
have IDs in the B3xx range and imports should have IDs in the B4xx range.

Plugin functions should return a dictionary mapping AST node types to lists of blacklist data. Currently the following
node types are supported:

• Call, used for blacklisting calls.

• Import, used for blacklisting module imports (this also implicitly tests ImportFrom and Call nodes where the
invoked function is Pythons built in ‘__import__()’ method).

Items in the data lists are Python dictionaries with the following structure:

key data meaning
‘name’ The issue name string.
‘id’ The bandit ID of the check, this must be unique and is used for filtering blacklist checks.
‘qual-
names’

A Python list of fully qualified name strings.

‘mes-
sage’

The issue message reported, this is a string that may contain the token ‘{name}’ that will be substituted
with the matched qualname in the final report.

‘level’ The severity level reported.

A utility method bandit.blacklists.utils.build_conf_dict is provided to aid building these dictionaries.

Example

>> Issue: [B317:blacklist] Using xml.sax.parse to parse untrusted XML
→˓data
is known to be vulnerable to XML attacks. Replace xml.sax.parse with its
defusedxml equivalent function.

Severity: Medium Confidence: High
Location: ./examples/xml_sax.py:24
23 sax.parseString(xmlString, ExampleContentHandler())
24 sax.parse('notaxmlfilethatexists.xml', ExampleContentHandler)
25

1.3.1 Complete Plugin Listing

blacklist_calls

Blacklist various Python calls known to be dangerous

This blacklist data checks for a number of Python calls known to have possible security implications. The following
blacklist tests are run against any function calls encoutered in the scanned code base, triggered by encoutering ast.Call
nodes.

30 Chapter 1. Getting Started



Bandit Documentation

B301: pickle

Pickle and modules that wrap it can be unsafe when used to deserialize untrusted data, possible security issue.

ID Name Calls Severity
B301 pickle

• pickle.loads
• pickle.load
• pickle.Unpickler
• cPickle.loads
• cPickle.load
• cPickle.Unpickler
• dill.loads
• dill.load
• dill.Unpickler

Medium

B302: marshal

Deserialization with the marshal module is possibly dangerous.

ID Name Calls Severity
B302 marshal

• marshal.load
• marshal.loads

Medium

B303: md5

Use of insecure MD2, MD4, MD5, or SHA1 hash function.

1.3. Bandit Blacklist Plugins 31



Bandit Documentation

ID Name Calls Severity
B303 md5

• hashlib.md5
• hashlib.sha1
•

Crypto.Hash.MD2.new
•

Crypto.Hash.MD4.new
•

Crypto.Hash.MD5.new
•

Crypto.Hash.SHA.new
•

Cryptodome.Hash.MD2.new
•

Cryptodome.Hash.MD4.new
•

Cryptodome.Hash.MD5.new
•

Cryptodome.Hash.SHA.new
•

cryptography.hazmat.primitives
.hashes.MD5

•
cryptography.hazmat.primitives
.hashes.SHA1

Medium

B304 - B305: ciphers and modes

Use of insecure cipher or cipher mode. Replace with a known secure cipher such as AES.

32 Chapter 1. Getting Started



Bandit Documentation

ID Name Calls Severity
B304 ciphers •

Crypto.Cipher.ARC2.new
•

Crypto.Cipher.ARC4.new
•

Crypto.Cipher.Blowfish.new
•

Crypto.Cipher.DES.new
•

Crypto.Cipher.XOR.new
•

Cryptodome.Cipher.ARC2.new
•

Cryptodome.Cipher.ARC4.new
•

Cryptodome.Cipher.Blowfish.new
•

Cryptodome.Cipher.DES.new
•

Cryptodome.Cipher.XOR.new
•

cryptography.hazmat.primitives
.ci-
phers.algorithms.ARC4

•
cryptography.hazmat.primitives
.ci-
phers.algorithms.Blowfish

•
cryptography.hazmat.primitives
.ci-
phers.algorithms.IDEA

High

B305 cipher_modes •
cryptography.hazmat.primitives
.ci-
phers.modes.ECB

Medium

B306: mktemp_q

Use of insecure and deprecated function (mktemp).

ID Name Calls Severity
B306 mktemp_q

• tempfile.mktemp
Medium

1.3. Bandit Blacklist Plugins 33



Bandit Documentation

B307: eval

Use of possibly insecure function - consider using safer ast.literal_eval.

ID Name Calls Severity
B307 eval

• eval
Medium

B308: mark_safe

Use of mark_safe() may expose cross-site scripting vulnerabilities and should be reviewed.

ID Name Calls Severity
B308 mark_safe •

django.utils.safestring.mark_safe

Medium

B309: httpsconnection

Use of HTTPSConnection on older versions of Python prior to 2.7.9 and 3.4.3 do not provide security, see https:
//wiki.openstack.org/wiki/OSSN/OSSN-0033

ID Name Calls Severity
B309 httpsconnection •

httplib.HTTPSConnection
•

http.client.HTTPSConnection
•

six.moves.http_client
.HTTPSConnection

Medium

B310: urllib_urlopen

Audit url open for permitted schemes. Allowing use of ‘file:” or custom schemes is often unexpected.

34 Chapter 1. Getting Started

https://wiki.openstack.org/wiki/OSSN/OSSN-0033
https://wiki.openstack.org/wiki/OSSN/OSSN-0033


Bandit Documentation

ID Name Calls Severity
B310 urllib_urlopen

• urllib.urlopen
•

urllib.request.urlopen
• urllib.urlretrieve
•

urllib.request.urlretrieve
• urllib.URLopener
•

urllib.request.URLopener
•

urllib.FancyURLopener
•

urllib.request.FancyURLopener
• urllib2.urlopen
• urllib2.Request
•

six.moves.urllib.request.urlopen
•

six.moves.urllib.request
.urlretrieve

•
six.moves.urllib.request
.URLopener

•
six.moves.urllib.request
.FancyURLopener

Medium

B311: random

Standard pseudo-random generators are not suitable for security/cryptographic purposes.

ID Name Calls Severity
B311 random

• random.random
• random.randrange
• random.randint
• random.choice
• random.uniform
• random.triangular

Low

B312: telnetlib

Telnet-related functions are being called. Telnet is considered insecure. Use SSH or some other encrypted protocol.

ID Name Calls Severity
B312 telnetlib

• telnetlib.*
High

1.3. Bandit Blacklist Plugins 35



Bandit Documentation

B313 - B320: XML

Most of this is based off of Christian Heimes’ work on defusedxml: https://pypi.org/project/defusedxml/
#defusedxml-sax

Using various XLM methods to parse untrusted XML data is known to be vulnerable to XML attacks. Methods should
be replaced with their defusedxml equivalents.

36 Chapter 1. Getting Started

https://pypi.org/project/defusedxml/#defusedxml-sax
https://pypi.org/project/defusedxml/#defusedxml-sax


Bandit Documentation

ID Name Calls Severity
B313 xml_bad_cElementTree •

xml.etree.cElementTree.parse
•

xml.etree.cElementTree.iterparse
•

xml.etree.cElementTree.fromstring
•

xml.etree.cElementTree.XMLParser

Medium

B314 xml_bad_ElementTree •
xml.etree.ElementTree.parse

•
xml.etree.ElementTree.iterparse

•
xml.etree.ElementTree.fromstring

•
xml.etree.ElementTree.XMLParser

Medium

B315 xml_bad_expatreader •
xml.sax.expatreader.create_parser

Medium

B316 xml_bad_expatbuilder •
xml.dom.expatbuilder.parse

•
xml.dom.expatbuilder.parseString

Medium

B317 xml_bad_sax
• xml.sax.parse
• xml.sax.parseString
•

xml.sax.make_parser

Medium

B318 xml_bad_minidom •
xml.dom.minidom.parse

•
xml.dom.minidom.parseString

Medium

B319 xml_bad_pulldom •
xml.dom.pulldom.parse

•
xml.dom.pulldom.parseString

Medium

B320 xml_bad_etree
• lxml.etree.parse
•

lxml.etree.fromstring
•

lxml.etree.RestrictedElement
•

lxml.etree.GlobalParserTLS
•

lxml.etree.getDefaultParser
•

lxml.etree.check_docinfo

Medium

1.3. Bandit Blacklist Plugins 37



Bandit Documentation

B321: ftplib

FTP-related functions are being called. FTP is considered insecure. Use SSH/SFTP/SCP or some other encrypted
protocol.

ID Name Calls Severity
B321 ftplib

• ftplib.*
High

B322: input

The input method in Python 2 will read from standard input, evaluate and run the resulting string as python source
code. This is similar, though in many ways worse, then using eval. On Python 2, use raw_input instead, input is safe
in Python 3.

ID Name Calls Severity
B322 input

• input
High

B323: unverified_context

By default, Python will create a secure, verified ssl context for use in such classes as HTTPSConnection. However, it
still allows using an insecure context via the _create_unverified_context that reverts to the previous behavior that does
not validate certificates or perform hostname checks.

ID Name Calls Severity
B323 unverified_context •

ssl._create_unverified_context

Medium

B325: tempnam

Use of os.tempnam() and os.tmpnam() is vulnerable to symlink attacks. Consider using tmpfile() instead.

For further information: https://docs.python.org/2.7/library/os.html#os.tempnam https://bugs.python.org/
issue17880

ID Name Calls Severity
B325 tempnam • os.tempnam

• os.tmpnam

Medium

blacklist_imports

38 Chapter 1. Getting Started

https://docs.python.org/2.7/library/os.html#os.tempnam
https://bugs.python.org/issue17880
https://bugs.python.org/issue17880


Bandit Documentation

Blacklist various Python imports known to be dangerous

This blacklist data checks for a number of Python modules known to have possible security implications. The follow-
ing blacklist tests are run against any import statements or calls encountered in the scanned code base.

Note that the XML rules listed here are mostly based off of Christian Heimes’ work on defusedxml: https://pypi.org/
project/defusedxml/

B401: import_telnetlib

A telnet-related module is being imported. Telnet is considered insecure. Use SSH or some other encrypted protocol.

ID Name Imports Severity
B401 import_telnetlib

• telnetlib
high

B402: import_ftplib

A FTP-related module is being imported. FTP is considered insecure. Use SSH/SFTP/SCP or some other encrypted
protocol.

ID Name Imports Severity
B402 inport_ftplib

• ftplib
high

B403: import_pickle

Consider possible security implications associated with these modules.

ID Name Imports Severity
B403 import_pickle

• pickle
• cPickle
• dill

low

B404: import_subprocess

Consider possible security implications associated with these modules.

ID Name Imports Severity
B404 import_subprocess

• subprocess
low

1.3. Bandit Blacklist Plugins 39

https://pypi.org/project/defusedxml/
https://pypi.org/project/defusedxml/


Bandit Documentation

B405: import_xml_etree

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package, or make sure defusedxml.defuse_stdlib() is called.

ID Name Imports Severity
B405 import_xml_etree •

xml.etree.cElementTree
•

xml.etree.ElementTree

low

B406: import_xml_sax

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package, or make sure defusedxml.defuse_stdlib() is called.

ID Name Imports Severity
B406 import_xml_sax

• xml.sax
low

B407: import_xml_expat

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package, or make sure defusedxml.defuse_stdlib() is called.

ID Name Imports Severity
B407 import_xml_expat •

xml.dom.expatbuilder

low

B408: import_xml_minidom

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package, or make sure defusedxml.defuse_stdlib() is called.

ID Name Imports Severity
B408 import_xml_minidom

• xml.dom.minidom
low

B409: import_xml_pulldom

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package, or make sure defusedxml.defuse_stdlib() is called.

40 Chapter 1. Getting Started



Bandit Documentation

ID Name Imports Severity
B409 import_xml_pulldom

• xml.dom.pulldom
low

B410: import_lxml

Using various methods to parse untrusted XML data is known to be vulnerable to XML attacks. Replace vulnerable
imports with the equivalent defusedxml package.

ID Name Imports Severity
B410 import_lxml

• lxml
low

B411: import_xmlrpclib

XMLRPC is particularly dangerous as it is also concerned with communicating data over a network. Use de-
fused.xmlrpc.monkey_patch() function to monkey-patch xmlrpclib and mitigate remote XML attacks.

ID Name Imports Severity
B411 import_xmlrpclib

• xmlrpclib
high

B412: import_httpoxy

httpoxy is a set of vulnerabilities that affect application code running in CGI, or CGI-like environments. The use of CGI
for web applications should be avoided to prevent this class of attack. More details are available at https://httpoxy.org/.

ID Name Imports Severity
B412 import_httpoxy •

wsgiref.handlers.CGIHandler
•

twisted.web.twcgi.CGIScript

high

B413: import_pycrypto

pycrypto library is known to have publicly disclosed buffer overflow vulnerability https://github.com/dlitz/pycrypto/
issues/176. It is no longer actively maintained and has been deprecated in favor of pyca/cryptography library.

1.3. Bandit Blacklist Plugins 41

https://httpoxy.org/
https://github.com/dlitz/pycrypto/issues/176
https://github.com/dlitz/pycrypto/issues/176


Bandit Documentation

ID Name Imports Severity
B413 import_pycrypto

• Crypto.Cipher
• Crypto.Hash
• Crypto.IO
• Crypto.Protocol
• Crypto.PublicKey
• Crypto.Random
• Crypto.Signature
• Crypto.Util

high

B414: import_pycryptodome

pycryptodome is a direct fork of pycrypto that has not fully addressed the issues inherent in PyCrypto. It seems to
exist, mainly, as an API compatible continuation of pycrypto and should be deprecated in favor of pyca/cryptography
which has more support among the Python community.

ID Name Imports Severity
B414 import_pycryptodome

• Cryptodome.Cipher
• Cryptodome.Hash
• Cryptodome.IO
•

Cryptodome.Protocol
•

Cryptodome.PublicKey
•

Cryptodome.Random
•

Cryptodome.Signature
• Cryptodome.Util

high

New in version 0.17.0.

1.4 Bandit Report Formatters

Bandit supports many different formatters to output various security issues in python code. These formatters are
created as plugins and new ones can be created to extend the functionality offered by bandit today.

1.4.1 Example Formatter

def report(manager, fileobj, sev_level, conf_level, lines=-1):
result = bson.dumps(issues)
with fileobj:

fileobj.write(result)

To register your plugin, you have two options:

42 Chapter 1. Getting Started



Bandit Documentation

1. If you’re using setuptools directly, add something like the following to your setup call:

# If you have an imaginary bson formatter in the bandit_bson module
# and a function called `formatter`.
entry_points={'bandit.formatters': ['bson = bandit_bson:formatter']}

2. If you’re using pbr, add something like the following to your setup.cfg file:

[entry_points]
bandit.formatters =

bson = bandit_bson:formatter

1.4.2 Complete Formatter Listing

csv

CSV Formatter

This formatter outputs the issues in a comma separated values format.

Example

filename,test_name,test_id,issue_severity,issue_confidence,issue_text,
line_number,line_range,more_info
examples/yaml_load.py,blacklist_calls,B301,MEDIUM,HIGH,"Use of unsafe yaml
load. Allows instantiation of arbitrary objects. Consider yaml.safe_load().
",5,[5],https://bandit.readthedocs.io/en/latest/

New in version 0.11.0.

Changed in version 1.5.0: New field more_info added to output

html

HTML formatter

This formatter outputs the issues as HTML.

Example

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">

<title>
Bandit Report

</title>

<style>

html * {
font-family: "Arial", sans-serif;

}

(continues on next page)

1.4. Bandit Report Formatters 43



Bandit Documentation

(continued from previous page)

pre {
font-family: "Monaco", monospace;

}

.bordered-box {
border: 1px solid black;
padding-top:.5em;
padding-bottom:.5em;
padding-left:1em;

}

.metrics-box {
font-size: 1.1em;
line-height: 130%;

}

.metrics-title {
font-size: 1.5em;
font-weight: 500;
margin-bottom: .25em;

}

.issue-description {
font-size: 1.3em;
font-weight: 500;

}

.candidate-issues {
margin-left: 2em;
border-left: solid 1px; LightGray;
padding-left: 5%;
margin-top: .2em;
margin-bottom: .2em;

}

.issue-block {
border: 1px solid LightGray;
padding-left: .5em;
padding-top: .5em;
padding-bottom: .5em;
margin-bottom: .5em;

}

.issue-sev-high {
background-color: Pink;

}

.issue-sev-medium {
background-color: NavajoWhite;

}

.issue-sev-low {
background-color: LightCyan;

}

</style>
(continues on next page)

44 Chapter 1. Getting Started



Bandit Documentation

(continued from previous page)

</head>

<body>

<div id="metrics">
<div class="metrics-box bordered-box">

<div class="metrics-title">
Metrics:<br>

</div>
Total lines of code: <span id="loc">9</span><br>
Total lines skipped (#nosec): <span id="nosec">0</span>

</div>
</div>

<br>
<div id="results">

<div id="issue-0">
<div class="issue-block issue-sev-medium">

<b>yaml_load: </b> Use of unsafe yaml load. Allows
instantiation of arbitrary objects. Consider yaml.safe_load().<br>
<b>Test ID:</b> B506<br>
<b>Severity: </b>MEDIUM<br>
<b>Confidence: </b>HIGH<br>
<b>File: </b><a href="examples/yaml_load.py"
target="_blank">examples/yaml_load.py</a> <br>
<b>More info: </b><a href="https://bandit.readthedocs.io/en/latest/
plugins/yaml_load.html" target="_blank">
https://bandit.readthedocs.io/en/latest/plugins/yaml_load.html</a>
<br>

<div class="code">
<pre>
5 ystr = yaml.dump({'a' : 1, 'b' : 2, 'c' : 3})
6 y = yaml.load(ystr)
7 yaml.dump(y)
</pre>
</div>

</div>
</div>

</div>

</body>
</html>

New in version 0.14.0.

json

1.4. Bandit Report Formatters 45



Bandit Documentation

JSON formatter

This formatter outputs the issues in JSON.

Example

{
"errors": [],
"generated_at": "2015-12-16T22:27:34Z",
"metrics": {
"_totals": {

"CONFIDENCE.HIGH": 1,
"CONFIDENCE.LOW": 0,
"CONFIDENCE.MEDIUM": 0,
"CONFIDENCE.UNDEFINED": 0,
"SEVERITY.HIGH": 0,
"SEVERITY.LOW": 0,
"SEVERITY.MEDIUM": 1,
"SEVERITY.UNDEFINED": 0,
"loc": 5,
"nosec": 0

},
"examples/yaml_load.py": {

"CONFIDENCE.HIGH": 1,
"CONFIDENCE.LOW": 0,
"CONFIDENCE.MEDIUM": 0,
"CONFIDENCE.UNDEFINED": 0,
"SEVERITY.HIGH": 0,
"SEVERITY.LOW": 0,
"SEVERITY.MEDIUM": 1,
"SEVERITY.UNDEFINED": 0,
"loc": 5,
"nosec": 0

}
},
"results": [
{

"code": "4 ystr = yaml.dump({'a' : 1, 'b' : 2, 'c' : 3})\n5
y = yaml.load(ystr)\n6 yaml.dump(y)\n",

"filename": "examples/yaml_load.py",
"issue_confidence": "HIGH",
"issue_severity": "MEDIUM",
"issue_text": "Use of unsafe yaml load. Allows instantiation of

arbitrary objects. Consider yaml.safe_load().\n",
"line_number": 5,
"line_range": [

5
],
"more_info": "https://bandit.readthedocs.io/en/latest/",
"test_name": "blacklist_calls",
"test_id": "B301"

}
]

}

New in version 0.10.0.

46 Chapter 1. Getting Started



Bandit Documentation

screen

Screen formatter

This formatter outputs the issues as color coded text to screen.

Example

>> Issue: [B506: yaml_load] Use of unsafe yaml load. Allows
instantiation of arbitrary objects. Consider yaml.safe_load().

Severity: Medium Confidence: High
Location: examples/yaml_load.py:5
More Info: https://bandit.readthedocs.io/en/latest/

4 ystr = yaml.dump({'a' : 1, 'b' : 2, 'c' : 3})
5 y = yaml.load(ystr)
6 yaml.dump(y)

New in version 0.9.0.

text

Text Formatter

This formatter outputs the issues as plain text.

Example

>> Issue: [B301:blacklist_calls] Use of unsafe yaml load. Allows
instantiation of arbitrary objects. Consider yaml.safe_load().

Severity: Medium Confidence: High
Location: examples/yaml_load.py:5
More Info: https://bandit.readthedocs.io/en/latest/

4 ystr = yaml.dump({'a' : 1, 'b' : 2, 'c' : 3})
5 y = yaml.load(ystr)
6 yaml.dump(y)

New in version 0.9.0.

xml

XML Formatter

This formatter outputs the issues as XML.

Example

<?xml version='1.0' encoding='utf-8'?>
<testsuite name="bandit" tests="1"><testcase
classname="examples/yaml_load.py" name="blacklist_calls"><error
message="Use of unsafe yaml load. Allows instantiation of arbitrary
objects. Consider yaml.safe_load().&#10;" type="MEDIUM"
more_info="https://bandit.readthedocs.io/en/latest/">Test ID: B301
Severity: MEDIUM Confidence: HIGH Use of unsafe yaml load. Allows

(continues on next page)

1.4. Bandit Report Formatters 47



Bandit Documentation

(continued from previous page)

instantiation of arbitrary objects. Consider yaml.safe_load().

Location examples/yaml_load.py:5</error></testcase></testsuite>

New in version 0.12.0.

yaml

YAML Formatter

This formatter outputs the issues in a yaml format.

Example

errors: []
generated_at: '2017-03-09T22:29:30Z'
metrics:

_totals:
CONFIDENCE.HIGH: 1
CONFIDENCE.LOW: 0
CONFIDENCE.MEDIUM: 0
CONFIDENCE.UNDEFINED: 0
SEVERITY.HIGH: 0
SEVERITY.LOW: 0
SEVERITY.MEDIUM: 1
SEVERITY.UNDEFINED: 0
loc: 9
nosec: 0

examples/yaml_load.py:
CONFIDENCE.HIGH: 1
CONFIDENCE.LOW: 0
CONFIDENCE.MEDIUM: 0
CONFIDENCE.UNDEFINED: 0
SEVERITY.HIGH: 0
SEVERITY.LOW: 0
SEVERITY.MEDIUM: 1
SEVERITY.UNDEFINED: 0
loc: 9
nosec: 0

results:
- code: '5 ystr = yaml.dump({''a'' : 1, ''b'' : 2, ''c'' : 3})\n

6 y = yaml.load(ystr)\n7 yaml.dump(y)\n'
filename: examples/yaml_load.py
issue_confidence: HIGH
issue_severity: MEDIUM
issue_text: Use of unsafe yaml load. Allows instantiation of arbitrary

objects.
Consider yaml.safe_load().

line_number: 6
line_range:
- 6
more_info: https://bandit.readthedocs.io/en/latest/
test_id: B506
test_name: yaml_load

New in version 1.5.0.

48 Chapter 1. Getting Started



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

49



Bandit Documentation

50 Chapter 2. Indices and tables



Python Module Index

b
bandit.blacklists.calls, 30
bandit.blacklists.imports, 38

f
bandit.formatters.csv, 43
bandit.formatters.html, 43
bandit.formatters.json, 45
bandit.formatters.screen, 47
bandit.formatters.text, 47
bandit.formatters.xml, 47
bandit.formatters.yaml, 48

p
bandit.plugins.app_debug, 13
bandit.plugins.asserts, 6
bandit.plugins.crypto_request_no_cert_validation,

13
bandit.plugins.exec, 6
bandit.plugins.general_bad_file_permissions,

7
bandit.plugins.general_bind_all_interfaces,

8
bandit.plugins.general_hardcoded_tmp,

10
bandit.plugins.injection_paramiko, 18
bandit.plugins.injection_sql, 26
bandit.plugins.injection_wildcard, 27
bandit.plugins.jinja2_templates, 28
bandit.plugins.mako_templates, 29
bandit.plugins.ssh_no_host_key_verification,

18
bandit.plugins.try_except_continue, 12
bandit.plugins.try_except_pass, 11
bandit.plugins.weak_cryptographic_key,

17
bandit.plugins.yaml_load, 17

51



Bandit Documentation

52 Python Module Index



Index

B
bandit.blacklists.calls (module), 30
bandit.blacklists.imports (module), 38
bandit.formatters.csv (module), 43
bandit.formatters.html (module), 43
bandit.formatters.json (module), 45
bandit.formatters.screen (module), 47
bandit.formatters.text (module), 47
bandit.formatters.xml (module), 47
bandit.formatters.yaml (module), 48
bandit.plugins.app_debug (module), 13
bandit.plugins.asserts (module), 6
bandit.plugins.crypto_request_no_cert_validation

(module), 13
bandit.plugins.exec (module), 6
bandit.plugins.general_bad_file_permissions

(module), 7
bandit.plugins.general_bind_all_interfaces

(module), 8
bandit.plugins.general_hardcoded_tmp

(module), 10
bandit.plugins.injection_paramiko (mod-

ule), 18
bandit.plugins.injection_sql (module), 26
bandit.plugins.injection_wildcard (mod-

ule), 27
bandit.plugins.jinja2_templates (module),

28
bandit.plugins.mako_templates (module), 29
bandit.plugins.ssh_no_host_key_verification

(module), 18
bandit.plugins.try_except_continue (mod-

ule), 12
bandit.plugins.try_except_pass (module),

11
bandit.plugins.weak_cryptographic_key

(module), 17
bandit.plugins.yaml_load (module), 17

53


	Getting Started
	Indices and tables
	Python Module Index
	Index

